Indian Standard

RETAINING WALL FOR HILL AREA —
GUIDELINES

PART 1 SELECTION OF TYPE OF WALL

© BIS 1998

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

May 1998
FOREWORD

This Indian Standard (Part 1) was adopted by the Bureau of Indian Standards, after the draft finalized by the Hill Area Development Engineering Sectional Committee had been approved by the Civil Engineering Division Council.

Retaining wall is a structure used to retain backfill and maintain difference in the elevation of the two ground surfaces. Retaining wall may be effectively utilized to tackle the problem of landslide in hill area by stabilizing the fill slopes and cut slopes.

From the initial construction cost considerations, one metre of extra width in filling, requiring retaining walls, costs much more than constructing the same width by cutting inside the hill. Similarly the cost of a breast wall is several times more than a non-walled cut slope. However, considering maintenance cost, progressive slope instability and environmental degradation from unprotected heavy excavations, the use of retaining walls on hill roads and terraces becomes essential. This standard (Part 1) is, therefore, being formulated to provide necessary guidance in selection of retaining walls for stability of hill slopes, the other parts of the standard being:

- Part 2 Design of retaining/breast walls
- Part 3 Construction of dry stone walls
- Part 4 Construction of banded dry stone walls
- Part 5 Construction of cement stone walls
- Part 6 Construction of gabion walls
- Part 7 Construction of RCC crib walls
- Part 8 Construction of timber crib walls
- Part 9 Design of RCC cantilever wall/buttressed walls/L-type walls
- Part 10 Design and construction of reinforced earth retaining walls

In the formulation of this standard, considerable assistance has been provided by International Centre for Integrated Mountain Development, Kathmandu. Assistance has also been derived from Mountain Risk Engineering Handbook.

The composition of technical committee responsible for the formulation of this standard is given at Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Indian Standard

RETAINING WALL FOR HILL AREA —
GUIDELINES

PART 1 SELECTION OF TYPE OF WALL

1 SCOPE

This standard (Part 1) covers the guidelines for selection of various retaining walls to suit the site conditions, for the purpose of imparting stability to the slopes in hill areas.

NOTE — The retaining walls are normally not intended to stabilize slope failures. They are mainly meant to support the active or passive earth pressure from the assumed failure wedge above the base of the wall. The stabilization of existing or probable failure planes caused by landslides, flows and falls require separate treatment and specific design approaches. Only the fill slopes and cut slopes could be stabilized/retained by retaining walls.

2 CLASSIFICATION

2.1 The retaining walls shall be classified on the basis of type of construction and mechanics of behaviour (see Fig. 1) as follows:

a) Gravity walls
b) Tie back walls
c) Driven cantilever walls
d) Reinforced earth walls
e) RCC walls

2.2 The classification of retaining walls with respect to their design and probable behaviour of construction medium may be as follows:

a) Bin walls
 i) Rectangular
 ii) Circular
 iii) Cross tied
b) Crib walls
 i) Concrete crib
 ii) Timber crib
c) Gabions walls and wire crated/sausage walls
d) Cement masonry walls
e) Dry stone masonry walls
f) Drum walls
g) Reinforced backfill walls

Fig. 1 DIFFERENT TYPES OF RETAINING WALLS — (Continued)
3 SELECTION OF TYPE OF WALLS

3.1 In general, the choice of wall depends on local resources, local skill, hill slope angle, foundation conditions, slope of backfill, compatibility of materials and seismicity of the region (see Tables 1 and 2). However, the guidelines given in 3.1.1 to 3.1.14 shall be considered for selection of the type of retaining wall to be constructed for the purpose of imparting stability to the slopes in hill area.

3.1.1 For hilly roads, being of low volume, walls may not be designed for earthquake forces. It is economical to repair failed walls after earthquake.

3.1.2 Earthquake considerations lead to excessive wall dimensions. High walls may, therefore, be avoided by alternative geometric designs of roads and terraces unless justified by risk analysis. Walls with dip at the base towards hillside will reduce the base width in seismic areas.

3.1.3 Front battered retaining walls are many times more expensive than back battered walls in steep hilly areas.

3.1.4 A retaining wall on a thin talus slope may not be able to prevent the failure of entire talus slope during monsoon because of the quick rise of water table above the relatively impervious bed rock.

3.1.5 The construction of series of retaining walls one above another on an unstable or marginally stable slope shall be avoided as it adds more pressure on the lower walls destabilizing the slope contrary to the aim of stabilizing the slope. In such cases, unstable slope shall be stabilized by afforestation, surface/sub-surface drainage system, etc.

3.1.6 Improper backfill and poor drainage behind the wall involve complicated drainage conditions which are normally not considered in normal design. Proper drainage behind the walls shall, therefore, be provided.

3.1.7 The practice of undertaking wall construction after road/hill cutting poses the problem of disposal of excavated material and loss of top soil that could otherwise be used for vegetation. Hence during construction of retaining walls, the excavated material shall be disposed off at suitable identified sites.
3.1.8 Breast walls are more economical for cut slopes. Batter (negative) of the backfill side reduce base width of the wall significantly.

3.1.9 Dry stone retaining walls, breast walls and timber crib are economical but least durable, non-ductile structures. These are most susceptible to earthquake damages.

3.1.10 Gabion/wire crated walls shall be used in case of poor foundation or seepage conditions. These can take considerable differential settlement and some slope movement.

3.1.11 Banded dry stone masonry (height ≤ 6 m) and cement masonry walls are most durable but being non-ductile structures, are susceptible to earthquake damages.

3.1.12 Reinforced earth is normally used as reinforced fill platform for road. Generally it is not used as preventive method of slope support.

3.1.13 Timber crib, dry stone masonry walls may be provided for hill slope angle less than 30° and, height less than 4 m in low volume roads. These are not suitable for terrace development because of short life.

3.1.14 Cement masonry, RCC walls, Gabion walls shall be considered for high volume roads, high cut slopes and terraces. These are also suitable for hill slope angles from 30° to 60°, where higher walls are needed.
Table 1 Selection of Retaining Walls

(Clause 3.1)

<table>
<thead>
<tr>
<th>Type</th>
<th>Retaining Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Timber Crib</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction							
Top width	2 m	0.6-1.0 m	0.6-1.0 m	0.5-1.0 m	1 m	1.2 m	4 m or 0.7-0.8 m
Base width	—	0.5-0.7 H	0.6-0.65 H	0.5-0.65 H	0.6-0.75 H	0.55-0.65 H	4 m or 0.7-0.8 H
Front batter	4:1	—	varies	10:1	6:1	6:1	3:1
Back batter	4:1	varies	vertical	varies	varies	varies	3:1
Inward dip of foundation	1:4	1:3	1:3	horizontal or 1:6	1:6	1:6	horizontal
Foundation depth below drain	0.5-1 m	0.5 m	0.5-1 m	0.5-1 m	0.5 m	1 m	0.5 m
Range of height	3-9 m	1-6 m	6-8 m	1-10 m	1-6 m	6-10 m	3-25 m
Hill slope angle	<30°	<35°	20°	35-60	35-60	35-60	<35°
Toe protection in case of soft rock/soil	Boulder pitching	Boulder Pitching	No				

Notes

- General: Timbers 15 cm gap with stone rubble well packed behind timbers. 10% of all headers to extend into fill. Ecologically unacceptable.
- Set stones along foundation bed. Use long bond stones in back fill.
- Cement masonry bands of 50 cm thickness at 3 m c/c. Other specifications as for dry stone wall.
- Weep holes 15 x 15 cm size at 1-2 m c/c. 50 cm rubble backing for drainage. Stone to be hand packed. Stone shape important, blocky preferable to tabular. No weathered stone to be used. Compact granular back fill in layers (< 15 cm). Use H type gabion wall.
- Granular back fill preferred. Use geogrid for H < 4 m and tensar grid for H > 4 m. Provide drainage layer in case of seepage problems. Specify spacing of reinforcement grids.
1. Foundations to be stepped up if rock encountered.
2. All walls require durable rock filling of small to medium size.
3. Drainage of wall bases not shown. Provide 15 cm thick gravel layer in case of clayey foundation.

<table>
<thead>
<tr>
<th>Application</th>
<th>Least durable</th>
<th>Most durable</th>
<th>Can take differential settlement and slope movement</th>
<th>Huge potential used more as stable reinforced fill platform for road rather than preventive method of slope support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non ductile structure most susceptible to earthquake damage</td>
<td></td>
<td></td>
<td>Very flexible structures</td>
<td></td>
</tr>
</tbody>
</table>

1. Design as conventional retaining walls. Assume surcharge on road of 2T/m².
2. Used both as cut slope and fill slopes support. Breast wall is more economical for cut slope.
3. Choice of wall depends on local resources, local skill, hill slope angle, foundation conditions and also shape of back fill wedges as illustrated in diagrams and compatibility of materials.
Table 2 Selection of Breast Walls

(Clause 3.1)

<table>
<thead>
<tr>
<th>Type</th>
<th>Breast Walls/Revetment Walls</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Stone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banded Dry Stone Masonry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cement Masonry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal Drum Walls</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagrammatic cross-section</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Top width</th>
<th>0.5</th>
<th>0.5</th>
<th>0.5</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base width</td>
<td>0.29H</td>
<td>0.3M</td>
<td>0.33H</td>
<td>0.23M</td>
<td>2</td>
</tr>
<tr>
<td>Front batter</td>
<td>3:1</td>
<td>4:1</td>
<td>5:1</td>
<td>3:1</td>
<td>3 to 5:1</td>
</tr>
<tr>
<td>Back batter</td>
<td>1:3</td>
<td>1:4</td>
<td>1:5</td>
<td>1:3</td>
<td>1:5</td>
</tr>
<tr>
<td>Inward dip of foundation</td>
<td>0.5 m</td>
<td>0.5 m</td>
<td>0.5 m</td>
<td>0.5 m</td>
<td>0.5-1 m</td>
</tr>
<tr>
<td>Foundation depth below drain</td>
<td>6 m</td>
<td>4 m</td>
<td>3 m</td>
<td>3-8 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Range of height</td>
<td>35-60</td>
<td>35-60</td>
<td>35-70</td>
<td>35-60</td>
<td>35</td>
</tr>
<tr>
<td>Toe protection in case of soft rock/silt</td>
<td>No pitching</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>Pack stone along foundation bed. Use bond stones. Specify minimum stone size.</td>
<td>Cement masonry (1:6 bands of 0.5 m thickness at 3 m c/c).</td>
<td>Weep holes 15 x 15 cm at 1.5-2 m c/c and grade 1:10. Cement sand (1:6).</td>
<td>Step in front face 20-50 cm wide. Otherwise as for retaining walls.</td>
<td>Use vertical single drum for 0.7 m height. Anchor drum walls on sides.</td>
</tr>
<tr>
<td>Application</td>
<td>Least durable/economical</td>
<td>Little used</td>
<td>Most durable/cheapest or quite durable/costly. or</td>
<td>Promising/most economical or</td>
<td>Very flexible</td>
</tr>
<tr>
<td></td>
<td>Non ductile structures most susceptible to earthquake damage.</td>
<td>Revetments are used to prevent only major erosion, rock fall, slope degradation particularly where vulnerable structures are of risk.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX A
(Foreword)

COMMITTEE COMPOSITION

Hill Area Development Engineering Sectional Committee, CED 56

Chairman
DR GOPAL RANJAN

Members
SHRI SHEIKH NAZIR AHMED
PROF A. K. CHAKRABORTY
SHRI R. C. LAKHERA (Alternate)
CHAIRMAN-CUM-MANAGING DIRECTOR
SHRI B. B. KUMAR (Alternate)
CHIEF ENGINEER (DAM DESIGN)
SuptDG ENGINEER (Tehri Dam Design Circle) (Alternate)
CHIEF ENGINEER (ROADS)
SuptDG ENGINEER (ROADS) (Alternate)
DEPUTY DIRECTOR GENERAL (D & S DTE, DGBR)
DEPUTY SECRETARY (T), IRC (Alternate)
DIRECTOR, HCD (N & W)
DEPUTY GENERAL MANAGER (SARDAR SABHVIR) (Alternate)
DR R. K. DUBEY
DR D. S. UPADHYAY (Alternate)
SHRI Pawan Kumar GUPTA
FIELD COORDINATOR (Alternate)
SHRI T. N. GUPTA
SHRI J. SENGUPTA (Alternate)
SHRI M. M. HARBOLA
SHRI P. K. PATHAK (Alternate)
DR U. C. KALITA
SHRI B. C. BORTHAKUR (Alternate)
SHRI S. KAUL
SHRI KEEF KUMAR
PROF A K MAITRA
PROF ARVIND KRISHAN (Alternate)
SHRI G. S. MEHROTRA
SHRI N. C. BHAGAT (Alternate)
SHRI P. L. NARULA
SHRI S. DASGUPTA (Alternate)
SHRI M. PARTHASARATHY
SHRI N. K. BALL (Alternate)
SHRI D. P. PRADHAN
SHRI P. JAGANNATH RAo
SHRI D. S. TOILIA (Alternate)
DR K. S. RAo
SHRI P. K. SAH
SHRI J. GRIPAI AKKRISNA (Alternate)
SHRI G. S. SAINI
DR BHAWAN SINGH
DR P. C. JAIN (Alternate)
SHRI BHOPAL SINGH
SHRI R. D. SINGH
DR SUDHIR KUMAR (Alternate)
PROF C. P. SINHA
SHRI D. K. SINGH (Alternate)
SHRI LAKSHMI SINGH SONSHA
DR P. SRINIVASULU
SHRI N. GOPALAKRISHNAN (Alternate)

Representing
University of Roorkee, Roorkee
Public Works Department, Jammu & Kashmir
Indian Institute of Remote Sensing, Dehra Dun
National Buildings Construction Corporation, New Delhi
Uttar Pradesh Irrigation Design Organization, Roorkee
Ministry of Surface Transport, New Delhi
Indian Roads Congress, New Delhi
Central Water Commission, New Delhi
Indian Meteorological Department, New Delhi
Society for Integrated Development of Himalayas, Mussorie
Building Materials & Technology Promotion Council, New Delhi
Forest Survey of India, Dehra Dun
Regional Research Laboratory, Jorhat
Ministry of Railways, New Delhi
G.B. Pant Institute of Himalayan Environment and Development, Almora
School of Planning and Architecture, New Delhi
Central Building Research Institute, Roorkee
Geological Survey of India, Calcutta
Engineer-in-Chief’s Branch, Army Headquarters, New Delhi
Sikkim Hill Area Development Board, Gangtok
Central Road Research Institute, New Delhi
IIT, New Delhi
Directorate General Border Roads (D&S), New Delhi
Central Mining Research Institute, Dhanbad
University of Roorkee, Roorkee
Department of Science and Technology, New Delhi
National Institute of Hydrology, Roorkee
North-Eastern Regional Institute of Water and Land Management, Assam
Public Works Department, Simla
Structural Engineering Research Centre, Chennai

(Continued on page 8)
(Continue from page 7)

Members
SUPTDG SURVEYOR OF WORKS (NZ)
SURVEYOR OF WORKS-I (NZ) (Alternate)
SHRI V. SURESH
SHRI D. P. SINGH (Alternate)
SHRI S. C. TIWARI
SHRI K. VENKATA CHALAM
SHRI S. K. BARBAR (Alternate)
DR N. S. VIRHII
SHRI VINOD KUMAR,
Director (Civ Engg)

Representing
Central Public Works Department, New Delhi
Housing & Urban Development Corporation (HUDCO), New Delhi
U.P. Hill Area Development Board, Lucknow
Central Soil & Material Research Station, New Delhi
Wadia Institute of Himalayan Geology, Dehra Dun
Director General, BIS (Ex-officio Member)

Member Secretaries
SHRI T. B. NARAYANAN
Joint Director (Civ Engg), BIS

SHRI SANJAY PANT
Deputy Director (Civ Engg), BIS
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Handbook’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc : No. CED 56 (5515).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones : 323 01 31, 323 33 75, 323 94 02

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
Telephones : 323 01 31, 323 33 75, 323 94 02

Eastern : 1/14 C. I.T. Scheme VII M, V. I. P. Road, Maniktola
CALCUTTA 700 054

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern : C. I. T. Campus, IV Cross Road, CHENNAI 600 113

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093

Branches : AHMADABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE.
FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR.
LUCKNOW. NAGPUR. PATNA. PUNE. THIRUVANANTHAPURAM.

Printed at Prinograph, New Delhi, Ph : 5726847
Indian Standard

RETAINING WALL FOR HILL AREA — GUIDELINES

PART 2 DESIGN OF RETAINING/BREAST WALLS

ICS 93.020
FOREWORD

This Indian Standard was adopted by the Bureau of Indian Standards, after the draft finalized by the Hill Area Development Engineering Sectional Committee had been approved by the Civil Engineering Division Council.

Retaining wall is a structure used to retain backfill and maintain difference in the elevation of the two ground surfaces. Retaining wall may be effectively utilized to tackle the problem of landslide in hill area by stabilizing the fill slopes and cut slopes.

From the initial construction cost considerations, one metre of extra width in filling, requiring retaining walls, costs much more than constructing the same width by cutting inside the hill. Similarly the cost of a breast wall is several times more than a non-walled cut slope. However, considering maintenance cost, progressive slope instability and environmental degradation from unprotected heavy excavations, the use of retaining walls on hill roads and terraces becomes essential. This standard (Part 2) is, therefore, being formulated to provide necessary guidance in design of retaining/breast walls for stability of hill slopes, the other parts of the code being as follows which are under preparation:

- Part 1 Selection of type of wall,
- Part 3 Construction of dry stone walls,
- Part 4 Construction of banded dry stone walls,
- Part 5 Construction of cement stone walls,
- Part 6 Construction of gabion walls,
- Part 7 Construction of RCC crib walls,
- Part 8 Construction of timber crib walls,
- Part 9 Design of RCC cantilever wall/buttressed walls/L-type walls, and
- Part 10 Design and construction of reinforced earth retaining walls.

In the formulation of this standard, assistance has been derived from Mountain Risk Engineering Handbook.

The composition of technical committee responsible for the formulation of this standard is given at Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
IS 14458 (Part 2) : 1997

Indian Standard

RETAINING WALL FOR HILL AREA — GUIDELINES

PART 2 DESIGN OF RETAINING/BREAST WALLS

1 SCOPE

This standard (Part 2) deals with design of gravity type structures used to support earth or other materials behind them which would otherwise not stay in that position. Other types of retaining structures are covered in Part 9 and Part 10 of this standard (under preparation).

2 REFERENCES

The Indian Standards listed in Annex A contain provisions which through reference in this text, constitute provision of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated in Annex A.

3 GENERAL

3.1 Gravity type retaining structures in hills are generally of two types:

a) Breast wall, and
b) Retaining wall.

3.1.1 Breast walls are normally stone masonry walls provided to protect the slopes of cutting in natural ground from the action of weather and cut slope failure but not from impact of snow avalanches. A toe wall cannot be used to stabilize an unstable slope.

3.1.2 Retaining walls are built to resist the earth pressure of filling and the traffic loads of the road. These are commonly used in hill roads when the road goes in embankment or partly cutting and partly filling (see Fig. 1). The retaining walls are also used extensively to develop sites for building complexes.

4 BEARING CAPACITY

4.1 The allowable bearing capacity shall be calculated in accordance with IS 6403 on the basis of soil test data. In case of non-erodible rocks, the bearing capacity shall not exceed one-half the unconfined compression strength of the rock if the joints are

FIG. 1 TYPICAL ARRANGEMENT OF RETAINING WALL AND BREAST WALL IN A ROAD CROSS-SECTION
tight. Where the joints are open, the bearing capacity shall not exceed one-tenth the unconfined compression strength of the rock. Bearing capacity for weak and closely jointed rock shall be assessed after visual inspections supplemented as necessary by field or laboratory tests to determine their strength and compressibility. In the absence of soil test data, for preliminary design, the values given in Table 1 may be adopted. Bearing capacity of rocks may be determined in accordance with IS 12070. In case of erodible and weak foundations (clay, loose soil, etc) gabion walls shall be preferred as they can withstand high differential settlements.

Table 1 Safe Bearing Capacities for Different Types of Soil (Clause 4.1)

<table>
<thead>
<tr>
<th>Type of Bearing Material</th>
<th>Symbol</th>
<th>Consistency of Place</th>
<th>Recommended Value of Safe Bearing Capacity (t/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well graded mixture of fine and coarse-grained soil, glacial till, hard pan, boulder clay</td>
<td>GW-GC, GC, SC</td>
<td>Very compact</td>
<td>100</td>
</tr>
<tr>
<td>Gravel, gravel-sand mixtures, boulder-gravel mixtures</td>
<td>GW, GP</td>
<td>Very compact</td>
<td>80</td>
</tr>
<tr>
<td>Coarse to medium sand, sand with little gravel</td>
<td>SW, SP</td>
<td>Very compact</td>
<td>60</td>
</tr>
<tr>
<td>Fine to medium sand, silty or clayey medium to coarse sand</td>
<td>SW, SM, SC</td>
<td>Medium to compact</td>
<td>40</td>
</tr>
<tr>
<td>Fine sand, silty or clayey medium to fine sand</td>
<td>SP, SM, SC</td>
<td>Loose</td>
<td>30</td>
</tr>
<tr>
<td>Homogeneous inorganic clay, sandy or silty clay</td>
<td>CL, CH</td>
<td>Very stiff to hard</td>
<td>25</td>
</tr>
<tr>
<td>Inorganic silt, sandy or clayey silt, varied silt-clay-fine sand</td>
<td>ML, MH</td>
<td>Medium to stiff</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 When earthquake forces are included, the permissible increase in allowable bearing capacity shall be in accordance with 3.3 of IS 1893.

4.3 The value of cohesion 'c' and angle of internal friction 'Φ' vary for different backfill and foundation materials. These values shall be determined by experiment. However for preliminary design the values given in Table 2 may be used.

Table 2 Typical Strength Characteristics of Soil (Clause 4.3)

<table>
<thead>
<tr>
<th>Group</th>
<th>Symbol</th>
<th>c (Cohesion of Soil) (t/m²)</th>
<th>Φ (Effective Stress Envelope) (degrees)</th>
<th>tan Φ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>GW</td>
<td>0</td>
<td>> 38</td>
<td>> 0.79</td>
</tr>
<tr>
<td>(2)</td>
<td>GP</td>
<td>0</td>
<td>> 37</td>
<td>> 0.74</td>
</tr>
<tr>
<td>(3)</td>
<td>GM</td>
<td>0</td>
<td>> 34</td>
<td>> 0.87</td>
</tr>
<tr>
<td>(4)</td>
<td>GC</td>
<td>0</td>
<td>> 31</td>
<td>> 0.60</td>
</tr>
<tr>
<td>(5)</td>
<td>SW</td>
<td>0.5</td>
<td>34</td>
<td>0.67</td>
</tr>
<tr>
<td>(6)</td>
<td>SP</td>
<td>0.2</td>
<td>33</td>
<td>0.66</td>
</tr>
<tr>
<td>(7)</td>
<td>SM</td>
<td>0.75</td>
<td>31</td>
<td>0.60</td>
</tr>
<tr>
<td>(8)</td>
<td>SC</td>
<td>0.7</td>
<td>32</td>
<td>0.62</td>
</tr>
<tr>
<td>(9)</td>
<td>ML</td>
<td>0.95</td>
<td>28</td>
<td>0.54</td>
</tr>
<tr>
<td>(10)</td>
<td>MH</td>
<td>0.21</td>
<td>25</td>
<td>0.47</td>
</tr>
<tr>
<td>(11)</td>
<td>CH</td>
<td>1.0</td>
<td>19</td>
<td>0.35</td>
</tr>
</tbody>
</table>

5 DESIGN CRITERIA

5.1 The design of a retaining structure shall consist of two principal parts, the evaluation of loads and pressures that may act on the structure and the design of the structure to withstand these loads and pressures.

5.1.1 Following forces shall be accounted for in the design:

a) Self weight of the retaining structure;
b) Live load and imposed loads, if any;
c) Earth pressure acting on the wall;
d) Water pressure due to water table/subsurface seepage;
e) Water pressure due to water table on toe side, if any;
f) Seismic forces; and
g) Special loads, if any.

The self weight of the structure, and live and imposed loads shall be estimated in accordance with IS 875 (Parts 1 to 5). In the usual cases live load may be taken between 250 kg/m² to 500 kg/m² on the top width of the wall.

The earth pressures and other seismic forces on the retaining structure shall be estimated in accordance with IS 1893. For low volume roads, the walls may not be designed for earthquake forces. In case of retaining walls for roads earth pressure due to surcharge shall be in accordance with IRC Codes.

The consideration of full water pressure behind the wall may lead to quite heavy section. Adequate arrangement for release of this water pressure shall be made. At least 30 percent water pressure shall always be considered even in case of provision of good efficient pressure release system.

5.2 Retaining walls and breast walls shall be designed as rigid walls, using following criteria:

a) Factor of safety > 2.0 (static loads) > 1.5 (with overturning forces) (see also IS 1904)

b) Factor of safety > 1.5 (static loads) > 1.0 (with earthquake forces)

NOTE - The live loads and imposed loads adding to stability of the structure shall not be considered in working out the factors of safety given in 5.2(a) and 5.2(b)

c) Maximum base \(\leq q_b \) (allowable bearing pressure capacity)

\[\leq 1.33 q_e \text{ (during earthquake)} \]

d) Minimum base > 0 (zero) [see also IS 4247 (Part 3)]

e) Factor of safety > 1.25 against flotation

f) In case of steep hills, the factors of safety for slip surface below foundation shall be greater than 1.5 and 1.0 in static and seismic conditions respectively.

The design of wall foundations shall meet the requirements of IS 1080 and IS 1904.

5.3 Sometimes, to achieve the minimum factor of safety given in 5.2(b) and thereby resist sliding it may be necessary to increase the base area or to add concrete keys monolithic with foundation slab or to provide piles.

5.4 It is generally not possible to design each and every wall along the entire length of a road. Standard designs as given in Table 3 may be adopted for walls less than 8 m in height and 120 m² area in a low hazard zone provided the allowable bearing capacity is more than the maximum pressure indicated in the table.

6 OTHER DETAILS

6.1 Depth of Walls

The depth of retaining wall and breast wall below ground level or terrace level shall be at least 500 mm below side drain within soil or highly jointed rock and foundation shall be on natural firm ground. All multiple breast walls shall be taken to the firm rock surface.

6.2 Stepping of Base of Wall on Rock Slope

If the retaining wall is made on rock slope, the foundation shall be stepped as shown in Fig. 2. In case of steep slopes (>35°), retaining walls with front face nearly vertical and back-face inclined shall be used as it will reduce the height of wall considerably.

6.3 Dip of the Base of Wall Towards Hillside

A dip of the base of wall towards hillside to the extent of 3 : 1 (horizontal : vertical) proves very economical in seismic conditions (see Fig. 3). It increases factor of safety against sliding significantly.

6.4 Negative Batter of Backside of Breast Wall

Breast wall with negative batter (see Fig. 3) on cut-slope side reduces earth pressure significantly. So even nominal section of breast wall stabilizes cut slopes in soil, provided breast wall is founded on rock or firm natural ground. Negative batter of up to 1 : 3 (horizontal : vertical) is recommended.
Table 3 Standard Design of Cement Masonry and Dry Stone Masonry Retaining Walls
(Clause 5.4)

<table>
<thead>
<tr>
<th>Back Fill Type</th>
<th>Particulars</th>
<th>Cement Masonry</th>
<th>Dry Stone Masonry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ht 3M</td>
<td>Ht 6M</td>
</tr>
<tr>
<td>Good Back-fill</td>
<td>Top width in m</td>
<td>0.65</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Base width in m</td>
<td>1.91</td>
<td>2.01</td>
</tr>
<tr>
<td>Full Drainage</td>
<td>Foundation pressure in t/m²</td>
<td>14.00</td>
<td>13.00</td>
</tr>
<tr>
<td>GW, GP SW, SP</td>
<td>Foundation pressure in t/m²</td>
<td>15.00</td>
<td>13.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Back-fill Type</th>
<th>Particulars</th>
<th>Cement Masonry</th>
<th>Dry Stone Masonry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top width in m</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>Low pore Water pressure</td>
<td>Foundation pressure in t/m²</td>
<td>15.00</td>
<td>13.00</td>
</tr>
<tr>
<td>Good Back-fill</td>
<td>Top width in m</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Base width in m</td>
<td>6.49</td>
<td>7.89</td>
</tr>
<tr>
<td>Poor Back-fill</td>
<td>Top width in m</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Base width in m</td>
<td>6.49</td>
<td>7.89</td>
</tr>
<tr>
<td>GC, SC ML</td>
<td>Foundation pressure in t/m²</td>
<td>22.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>

NOTES
1. Wall Geometry: Front face vertical back, face inclined, base inclined with hill.
2. Back Fill Top: Horizontal with surcharge 1.5 t/m².
3. Select wall dimensions such that allowable bearing capacity is greater than the foundation pressure.
4. The base width for dry stone masonry wall is slightly less for cement masonry wall because wall friction angle is likely to be equal to angle of internal friction of back fill in the case of dry stone masonry.
6.5 Drainage Plan

6.5.1 Inverted filter shall be provided behind retaining walls to drain off ground water table or rain water seepage.

6.5.2 Weep holes shall be provided in cement stone masonry walls at spacing of about 1.5 m centre to centre in either direction. The size of weep holes shall be 100 mm to 150 mm PVC (flexible) pipes and shall be embedded at 10° down from the horizontal towards valley side to effectively drain the water from ground.

6.5.3 Impervious silty soil layer or back-fill of about 300 mm thickness shall be provided on the top to prevent seepage of rain water in the back-fill or into the foundation of buildings on terraces (see Fig. 3). However, the back-fill shall be of self-draining material (coarse sand, gravel and boulder), free of fines.

6.5.4 Natural gullies shall be diverted away from the building site so that flow of rain water does not cause erosion of breast walls on topmost terrace. Grass turfing shall be laid on the ground slope to prevent erosion.

6.5.5 Catch water drains shall be avoided near the top of the breast walls as they allow seepage of water in unmaintained conditions into the cut slope and destabilize it. If necessary, catch water drains may be provided far away from breast walls for above reasons. A catch water drain shall be provided at the toe of the breast wall to collect water from weep holes and surface runoff of the slope.

6.6 Erosion Control of Toe of Retaining Walls

The rain water flows at a high speed from high retaining walls (>3 m). This may lead to toe erosion of soft rocks (shale/sand rock/conglomerate, etc) at the foundation. So dry stone pitching may be done as shown in Fig. 3. Stones of 150 mm size may be laid on slope for a distance of 1 m below the toe of retaining walls.
ANNEX A

(Clause 2)

LIST OF REFERRED INDIAN STANDARDS

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>875</td>
<td>Code of practice for design loads (other than earthquake) for buildings and structures: (Part 1): 1987</td>
<td>1893:1984</td>
<td>Criteria for earthquake resistant design of structures (fourth revision)</td>
</tr>
<tr>
<td></td>
<td>Dead loads — Unit weights of building material and stored materials (second revision)</td>
<td>1904:1986</td>
<td>Code of practice for design and construction of foundations in soils: General requirements (third revision)</td>
</tr>
<tr>
<td></td>
<td>(Part 2): 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imposed loads (second revision)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind loads (second revision)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Part 4): 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow loads (second revision)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX B

(Foreward)

COMMITTEE COMPOSITION

Hill Area Development Engineering Sectional Committee, CED 56

Chairman
Dr Gopalan Ranjan

Members
Shri Sheikh Nazir Ahmed
Prof A. K. Chakraborty
Shri R. C. Lakhera (Alternate)

Chairman-cum-Managing Director
Shri B. B. Kumar (Alternate)

Chief Engineer (Dam Design)
Supdt Engineer (Tehri Dam Design Circle) (Alternate)

Chief Engineer (Roads)
Supdt Engineer (Roads) (Alternate)

Deputy Director General (D&D DIB, DOBR)
Deputy Secretary (T), IRC (Alternate)

Director, HCD (N&W)
Director (Sardar Sarovar) (Alternate)

Dr R. K. Dubey
Dr D. S. Upadhyay (Alternate)
Shri Pawan Kumar Gupta
Field Coordinator (Alternate)

Shri T. N. Gupta
Shri J. Singheetra (Alternate)
Shri M. C. Harshola
Shri P. K. Pathak (Alternate)

Dr U. C. Kalita
Shri B. C. Borhakur (Alternate)
Shri S. Kaal
Shri Khirory Kumar

Prof A. K. Madra
Prof Arvind Krishan (Alternate)
Dr G. S. Mehnoha
Shri N. C. Bhagat (Alternate)

Shri P. L. Narula
Shri S. Dasgupta (Alternate)

Shrimati M. Pathasrayth
Shri N. K. Bali (Alternate)

Shri D. P. Pradhan
Shri P. Jagannatha Rao
Shri D. S. Tolia (Alternate)

Dr K. S. Rao
Shri P. K. Sah
Shri J. Gopalakrisshana (Alternate)

Shri G. S. Saini
Dr Bhawani Singh
Dr P. C. Jain (Alternate)
Shri Bhawop Singh
Shri R. D. Singh

Dr Sudhir Kumar (Alternate)
Prof C. P. Saha
Shri D. K. Sing (Alternate)
Shri Lakshaw Singha Sonalish

Dr P. Surivaksulul
Shri N. Gopalarasan (Alternate)

Supdt Surveyor of Works (NZ)
Surveyor of Works - 1 (NZ) (Alternate)

Representing
University of Roorkee, Roorkee

Public Works Department, Jammu & Kashmir

Indian Institute of Remote Sensing, Dehra Dun

National Buildings Construction Corporation, New Delhi

Uttar Pradesh Irrigation Design Organization, Roorkee

Ministry of Surface Transport, New Delhi

Indian Roads Congress, New Delhi

Central Water Commission, New Delhi

Indian Meteorological Department, New Delhi

Society for Integrated Development of Himalayas, Mussorie

Building Materials and Technology Promotion Council, New Delhi

Forest Survey of India, Dehra Dun

Regional Research Laboratory, Jorhat

Ministry of Railways, New Delhi

G.B. Pant Institute of Himalayan Environment and Development, Almora

School of Planning and Architecture, New Delhi

Central Building Research Institute, Roorkee

Geological Survey of India, Calcutta

Engineer-in-Chief's Branch, Army Headquarters, New Delhi

Sikkim Hill Area Development Board, Gangtok

Central Road Research Institute, New Delhi

IIT, New Delhi

Directorate General Border Roads (D&D), New Delhi

Central Mining Research Institute, Dhanbad

University of Roorkee, Roorkee

Department of Science and Technology, New Delhi

National Institute of Hydrology, Roorkee

North-Eastern Regional Institute of Water and Land Management, Assam

Public Works Department, Simla

Structural Engineering Research Centre, Madras

Central Public Works Department, New Delhi

(Continued on page 8)
Members

SHRI V. SURJIT
SHRI D. P. SINGH (Alternate)
SHRI S. C. TIWARI
SHRI K. VENKATACHALAM
SHRI S. K. BASBAR (Alternate)
DR. N. S. VIRDI
SHRI VINOD KUMAR,
Director (Civ Engg)

Representing

Housing and Urban Development Corporation (HUDCO), New Delhi
U.P. Hill Area Development Board, Lucknow
Central Soil and Material Research Station, New Delhi
Wadia Institute of Himalayan Geology, Dehra Dun
Director General, BIS (Ex-officio Member)

Member Secretaries

SHRI T. B. NARAYAN
Joint Director (Civ Engg), BIS

SHRI SANJAY PANT
Deputy Director (Civ Engg), BIS
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Handbook' and 'Standards Monthly Additions'.

This Indian Standard has been developed from Doc: No. CHD 56 (5546).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 323 01 31, 323 33 75, 323 94 02

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
Telephones: 323 76 17, 323 38 41

Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Maniktola
CALCUTTA 700054
Telephones: 337 84 99, 337 85 61

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
Telephones: 60 38 43, 60 20 25

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
Telephones: 235 02 16, 235 04 42

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093
Telephones: 832 92 95, 832 78 58

Branches : AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR,
COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI,
HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR,
PATNA, PUNE, THIRUVANANTHAPURAM.

Printed at Simco Printing Press, Delhi, India
Indian Standard

RETTAINING WALL FOR HILL AREA — GUIDELINES

PART 3 CONSTRUCTION OF DRY STONE WALLS

© BIS 1998

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

June 1998

Price Group 3
FOREWORD

This Indian Standard (Part 3) was adopted by the Bureau of Indian Standards, after the draft finalized by the Hill Area Development Engineering Sectional Committee had been approved by the Civil Engineering Division Council.

Retaining wall is a structure used to retain backfill and maintain difference in the elevation of the two ground surfaces. Retaining wall may be effectively utilized to tackle the problem of landslide in hill area by stabilizing the fill slopes and cut slopes.

From the initial construction cost considerations, one metre of extra width in filling, requiring retaining walls, costs much more than constructing the same width by cutting inside the hill. Similarly the cost of a breast wall is several times more than a non-walled cut slope. However, considering maintenance cost, progressive slope instability and environmental degradation from unprotected heavy excavations, the use of retaining walls on hill roads and terraces becomes essential. This standard (Part 3) is, therefore, being formulated to provide necessary guidance in construction of dry stone retaining walls for stability of hill slopes, the other parts of the code being:

Part 1	Selection of type of wall
Part 2	Design of retaining/breast walls
Part 4	Construction of banded dry stone walls
Part 5	Construction of cement stone walls
Part 6	Construction of gabion walls
Part 7	Construction of RCC crib walls
Part 8	Construction of timber crib walls
Part 9	Design of RCC cantilever wall/butressed walls/L type walls
Part 10	Design and construction of reinforced earth retaining walls

The present practice in various Government departments is to construct retaining walls up to 4 m height in random rubble dry stone masonry. Retaining walls more than 4 m height are constructed either in lime or cement mortared masonry or in dry stone masonry panels separated by 0.6 m wide mortared masonry sleepers laid 3 to 4 m apart both in horizontal and vertical directions. The specified norms prescribed by the respective departments usually do not give sufficient weightage to the nature and properties of the soil or rock below the wall base and at the back of the wall, or the weather conditions. It is normally assumed that the mortared masonry or bands give sufficient strength to the wall for added stability and confines local failure, if any. In actual practice it has however been observed that a number of dry as well as banded or fully mortared walls do collapse during rains without offering much resistance as such these walls are used only as a temporary measure. This part, therefore, gives definite guidelines to the field engineers for construction of dry stone retaining walls.

Dry stone masonry retaining walls generally fail due to construction of grossly inadequate section of walls. Good supervision is, therefore, the key to better quality of construction of dry stone masonry walls. Strict supervision is essential for longer life of these type of walls. It shall be ensured that skilled labour is used in construction of dry stone masonry walls.

The composition of technical committee responsible for the formulation of this standard is given at Annex A.
Indian Standard

RETAINING WALL FOR HILL AREA — GUIDELINES

PART 3 CONSTRUCTION OF DRY STONE WALLS

1 SCOPE

This standard (Part 3) deals with the construction aspects of dry stone retaining walls.

2 REFERENCES

The Indian Standard IS 1123:1975 'Method of identification of natural building stones (first revision)' contain provisions which through reference in this text, constitute provision of this standard. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of the standard indicated above.

3 GENERAL

3.1 A hill road masonry retaining wall is a gravity wall which shall be considered safe under the expected conditions of loading, if following conditions are satisfied:

a) it shall be safe against overturning,

b) shearing stress shall be less than shearing strength available, and

c) the pressure at the toe shall remain less than the safe bearing capacity of the foundation material.

It may be, however, assumed that there is an adequate frictional bond between the stone layers from face to back and from top to base so that the entire section of the retaining wall acts as one unit. This may be very easily achieved by using stones of rectangular shape with sufficient overlap on each other enabling proper interlocking. The top width of the retaining wall shall be taken as 600 mm.

3.2 The stability of the retaining wall mainly depends upon the allowable bearing pressure of the foundation, particularly under the toe as compressive strength of properly constructed masonry section is usually adequate. Sliding at the base depends on the coefficient of friction between the wall base and the foundation soil. The total earth pressure above any level along the height of the retaining wall reduces parabolically from base upward, whereas the wall thickness reduces linearly. Therefore in most cases the critical section in the wall is at the base.

3.3 It cannot be asserted with any degree of certainty that fully mortared masonry wall or a panelled masonry wall shall give a better performance than a dry stone retaining wall, on account of the following:

a) The value of bonding material or mortar is only from the point of view of making the wall an integral unit. However it is not assured in the ease of hill roads and site development in hills; due to lack of supervision, non-availability of skilled labour, improper mixing of mortar, lack of post-construction, curing, etc and also sometimes paucity of water in the area.

b) Since both types of wall are not supposed to bear any tension, the strength of a dry stone masonry wall having the same section and similar soil conditions as a fully mortared masonry wall, shall be adequate. The compressive strength of properly packed dry stone masonry is likely to be more than that of foundation soil on the hill slope.

c) For sliding at the base, coefficient of friction between the wall base and the foundation soil being same in both types, the behaviour shall not be different. Thus there is no particular utility of bands or mortar and the strength of a properly constructed dry stone masonry retaining wall shall be quite sufficient. On account of its flexibility, a dry stone masonry retaining wall may be expected to behave better than a fully mortared masonry wall under seismic conditions.

d) Dry stone walls are easy to repair when it fails.

3.4 The design of dry stone masonry retaining wall shall be in accordance with Part 2 of this standard. A suitable computer program may be used for the design.

4 MATERIAL

Stone, the main material required for the construction of dry stone masonry retaining wall, is available in large quantity in hills. To select and utilize them for their satisfactory performance, it shall be necessary to know the various properties which can be determined according to relevant Indian Standards. The strength of rocks depends on its mineral constituents which form the basis of classification and identification of rocks. Identification of stones may be done in accordance with IS 1123.

5 BASE SLOPE

An inward slope provides good keying of the wall
in the hill face and also reduces the toe pressure, besides greatly increasing the sliding strength of the wall at base. Therefore, the base shall preferably be at right angles to the face of the wall. A minimum inward slope of 1 (Vertical) in 6 (Horizontal) shall be provided and it shall not be more than 1 (Vertical) in 3 (Horizontal). Base slope is very effective in seismic stability of walls.

6 STONE WORK

6.1 Rough flat stones shall be preferred as they give better contact and friction at joints. There shall be no dumping of stones. Stones shall be placed well interlocked at close proximity with each other. Size of stones below 225 mm × 100 mm × 75 mm (with mass of about 5 kg) shall not be used. The maximum size of stone shall be 600 mm × 200 mm × 300 mm with mass of about 45 kg. The largest dimension, that is, the length shall be placed across the length of the retaining wall for maximum stability as with this arrangement the wall face will not easily separate from the heaping. It shall result in greater unity and interlocking among the stones placed around it.

6.2 In dry stone masonry it shall be necessary to spread broken stone dust, stone chips, soil (gravelly or sandy soils) and soil mixtures, after placing each layer of stones to fill the voids. Filling of voids prevent filling of cavities by mud which is injurious to the wall as it makes it impervious to the flow of water. Fine grained soils and smooth river shingle shall not be used as these may lubricate the joint decreasing the frictional resistance. Only coarse angular particles shall be made use of. If available in the vicinity, water may also be sprinkled to moisten the fill material. Some ramming shall also be preferred. This helps in spreading the load of the overlying stones more eveny and increasing the weight of the wall and in turn increases the strength of the wall. Fig. 1(a), Fig. 1(b) and Fig. 1(c) represent bad construction practices liable to damage or cause failure of wall and shall be avoided.

7 PLACEMENT OF BACKFILL

No dumping of stones shall be done. The backfill shall preferably be done by hand packing to achieve the maximum angle of internal friction. The width of backfill shall be at least 500 mm. The backfill material shall be non-cohesive and as free draining as possible except the top layer of 300 to 500 mm thickness which shall be made as impervious as possible to minimize ingress of water from top surface.

8 DRAINAGE

8.1 The dry stone masonry retaining walls have the advantage that the masonry remains quite permeable to the flow of water and pressure normally does not build up. However, efficient drainage system above the top of the retaining wall is most essential. The top layer of backfill shall be laid at a proper camber and shoulder slope. The water flowing in the hill side drain shall be drained off through scuppers of appropriate design at regular intervals. The retaining wall top shall be kept slightly lower than the shoulder sloping outward so that water runs over the wall instead of seeping into the backfill. For site development, a 300 mm thick impervious soil layer (properly compacted) with boulders shall be laid above the top surface and backfill to prevent ingress of drain water. Typical sketch showing best retaining wall with good filling is shown in Fig. 1(d).

8.2 Excavated material from foundation if dumped by the side of the toe obstructs drainage. It must be sloped down below the top level of the toe projection.

9 TOE PROTECTION

The water coming out at high velocity from top of retaining wall can cause soil erosion at the toe and even below it by back erosion of soft rock or shale. Toe protection shall always be provided particularly in walls having height more than 3 m except where the toe rests on hard non-erodible rock.

10 RCC BONDING ELEMENT

In thicker wall sections and tall retaining walls, say greater than 3 m, special duly staggered bonding elements through the masonry, going from earth face of the wall to its front face at regular spacing along the length and height, shall be used. The bonding elements shall be spaced at 1 m interval along the length of the wall. These elements may consist of with overlapping bond stones (scissor bond stones), wooden bollies or bamboos but considering the durability these may consist of reinforced concrete member of square cross-section of 75 mm × 75 mm or 100 mm × 100 mm and having a length equal to the thickness of the wall plus 150 mm so that it may project out of wall by 75 mm on both sides for easy checking as shown in Fig. 2.
IS 14458 (Part 3) : 1998

1(a) ONLY FACE STONES ARE WELL PLACED
REST IS DUMPING OF STONE

1(b) STONE LAYERS SLOPING OUTWARDS

1(c) TOP IN SHOULDER SLOPE
HAND PACKED STONE FILLING MAY SLIDE DOWN ON SLOPE SURFACE CAUSING BACK PRESSURE ON WALL

1(d) GOOD HAND PACKED STONE FILLING IN STEPPED FACE
GOOD MASONRY

FIG. 1 TYPICAL CONSTRUCTION DETAILS FOR DRY STONE MASONRY WALL

1(a) RETAINING WALL OF VERY SMALL STRENGTH
1(c) GOOD RETAINING WALL BUT UNSTABLE FILLING

1(b) RETAINING WALL OF POOR STRENGTH
1(d) BEST RETAINING WALL WITH GOOD FILLING

FIG. 2 RCC BONDING ELEMENTS
ANNEX A
(Foreword)

COMMITTEE COMPOSITION
Hill Area Development Engineering Sectional Committee, CED 56

Chairman

DR Gopal Ranjan

Representing

University of Roorkee, Roorkee

Members

SHRI SHEIKH NAZIR AHMED

Public Works Department, Jammu & Kashmir

Prof. A. K. Chakraborty
SHRI R. C. LAKHERA (Alternate)

Indian Institute of Remote Sensing, Dehra Dun

Chairman-cum-Managing Director
SHRI B. B. KUMAR (Alternate)

National Buildings Construction Corporation, New Delhi

Chief Engineer (Dam Design)
Supplio Engineer (Tehri Dam Design Circle) (Alternate)

Uttar Pradesh Irrigation Design Organization, Roorkee

Chief Engineer (Roads)
Supplio Engineer (Roads) (Alternate)

Ministry of Surface Transport, New Delhi

Deputy Director General (D&S DTE, DGBR)

Indian Roads Congress, New Delhi

Deputy Secretary (T), IRC (Alternate)

Central Water Commission, New Delhi

Director, HCD (N&W)

Indian Meteorological Department, New Delhi

Director (Sardar Sarovar) (Alternate)

Society for Integrated Development of Himalayas, Mussoorie

Dr. R. K. Dubey

Building Materials and Technology Promotion Council, New Delhi

Dr. N. N. Chadha (Alternate)

Forest Survey of India, Dehra Dun

SHRI Pawan Kumar Gupta
SHRI J. SENGUPTA (Alternate)

Regional Research Laboratory, Jorhat

Field Coordinator

Ministry of Railways, New Delhi

SHRI T. N. GUPTA

G.B. Pant Institute of Himalayan Environment and Development, Almora

SHRI M. M. HARBOLA

School of Planning and Architecture, New Delhi

SHRI P. K. PATHAK (Alternate)

Central Building Research Institute, Roorkee

SHRI U. C. Kalita

Geological Survey of India, Calcutta

SHRI B. C. BORTHAKUR (Alternate)

Engineer-in-Chief’s Branch, Army Headquarters, New Delhi

SHRI S. KAUL

Sikkim Hill Area Development Board, Gangtok

SHRI KIREET KUMAR

Central Road Research Institute, New Delhi

Prof. A. K. Maitra

(Continued on page 5)

Prof. Arvind Krishan (Alternate)

SHRI D.P. PRADHAN

SHRI P. JAGANNATHA RAO

SHRI D. S. TOLIA (Alternate)
Members

Dr K. S. Rao

Dr Bhawani Singh
 Dr P. C. Jain (Alternate)

Shri Bhup Singh

Shri Raman Singh
 Shri J. Gopalakrishna (Alternate)

Shri R. D. Singh
 Dr Sudhakar Kumar (Alternate)

Prof C. P. Srinivasan
 Shri D. K. Singh (Alternate)

Shri Lakhdhir Singh Sonkula

Shri A. K. Soni

Dr P. Srinivasulu
 Shri N. Gopalakrishnan (Alternate)

Superintending Surveyor of Works (NZ)
 Surveyor of Works - I (NZ) (Alternate)

Shri V. Suresh
 Shri D. P. Singh (Alternate)

Shri S. C. Tiwari

Shri K. Venkatachalam
 Shri S. K. Bambar (Alternate)

Dr N. S. Virangi

Shri Vinod Kumar,
 Director (Civil Engg)

Representing

IIT, New Delhi

University of Roorkee, Roorkee

Department of Science and Technology, New Delhi

Directorate General Border Roads (D&S), New Delhi

National Institute of Hydrology, Roorkee

North-Eastern Regional Institute of Water and Land Management, Assam

Public Works Department, Simla

Central Mining Research Institute, Dhanbad

Structural Engineering Research Centre, Chennai

Central Public Works Department, New Delhi

Housing and Urban Development Corporation (HUDCO), New Delhi

U.P. Hill Area Development Board, Lucknow

Central Soil and Material Research Station, New Delhi

Wadia Institute of Himalayan Geology, Dehra Dun

Director General, BIS (Ex-officio Member)

Member-Secretary

Shri T. B. Narayanan
 Joint Director (Civil Engg), BIS
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Handbook’ and ‘Standards Monthly Additions’

This Indian Standard has been developed from Doc: No. CED 56 (5599)

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 323 01 31, 323 33 75, 323 94 02

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002
Telephone: 323 76 17, 323 38 41

Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Maniktola CALCUTTA 700054
Telegrams: Manaksanstha (Common to all offices)

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093

Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PATNA, PUNE, THIRUVANANTHAPURAM.

Printed at Dee Kay Printers, New Delhi, India